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A new real-space implementation of the molecular-replacement method is

described. The method locates the search model in the target crystal by

maximizing the matching between the search-model vectors and the Patterson

self and cross vectors. In previous work, a new rotation function was introduced

for the molecular-replacement method [Jiang (2008). Acta Cryst. D64, 561–566].

This rotation function is calculated by matching the search model directly with

both the Patterson self and cross vectors in real space. All the matches are

summed and averaged to enhance the overall signal-to-noise ratio for a given

orientation of the search model. Recently, to avoid the dependence of the

weights derived from the linear regression on the properties of the search model

and the target crystal structure, such as secondary structures, space groups and

cell parameters, a dynamic correlation coefficient has been designed and used

as the total rotation function score [Jiang & Ding (2010). Chin. Phys. B, 19,

106101]. This work further extends this idea to the implementation of translation

search. A new real- or direct-space translation function has been implemented

by matching the cross vectors between the symmetry mates of the search model

to the Patterson cross vectors. This method enables effective searching for small

helix fragments in the target crystal. Although the solution model assembled by

using multiple fragments of helix is insufficient to start ab initio phasing of the

target crystal, it can be used to identify the known protein folds in the Protein

Data Bank that are homologous to the target structure. It can also be combined

with other experimental and theoretical models to screen and select for better

search models for molecular replacement.

1. Introduction

In our previous work, we have introduced a new rotation

function for the molecular-replacement method (Jiang, 2008).

This rotation function is calculated by matching the search

model directly with both the Patterson self and cross vectors in

real space. All the matches are summed and averaged to

enhance the overall signal-to-noise ratio for a given orienta-

tion of the search model. The new rotation function uses a

number of ‘image-seeking’ functions to estimate the goodness

of the matches. The matching scores from all the ‘image-

seeking’ functions are combined into a single score using the

multiple linear regression method, which fits the rotation-

angle distance from the correct solution. Our previous tests

show that the correct solution usually appears in the top 100

solutions. Recently, to avoid the dependence of the weights

derived from the linear regression on the properties of

the search model and the target crystal structure, such as

secondary structures, space groups and cell parameters, a

dynamic correlation coefficient has been designed and used as

the total rotation function score. This dynamic correlation

coefficient is calculated on the fly, for each rotation sampled,

from the differences of the true angle distances and the fitted

angle distances. The data points used for fitting are obtained

by using the neighbour rotations of the sampled rotation and

fitting the angle distances of the neighbour rotations with their

‘image-seeking’ function scores (Jiang & Ding, 2010) as the

free variables. Tests show that the dynamic correlation coef-

ficient is a better rotation function and less dependent on

particular search models or target crystal structures. Further-

more, by using the dynamic correlation coefficient, the best

search parameters can be selected by sampling random rota-

tions to find the parameter set with the least background noise,

namely, the smallest dynamic correlation coefficient.

In this work, we will further extend the idea of the dynamic

correlation coefficient to the implementation of translation

search of the molecular-replacement method. We have

implemented a real- or direct-space translation function by

matching the cross vectors between the symmetry mates of the

search model to the Patterson cross vectors. The same ‘image-

seeking’ scoring functions are used as defined previously

(Jiang, 2008; Jiang & Ding, 2010). These matching scores are

combined by the linear regression method and then clustered

locally to calculate a dynamic correlation coefficient. The



clustering here not only includes the neighbour rotations but

also the nearby translations, namely a six-dimensional clus-

tering. The result of the clustering gives both a rotation and a

translation, which are obtained by averaging all the solutions

included in the local cluster for calculating the local dynamic

correlation coefficient. The test results will be described.

Then we implemented a rigid-body refinement method

using one of the quasi-Newton methods (Press et al., 1992).

The gradient is calculated by using functional difference taken

at small variable intervals. Since this is a real-space refinement

method, we calculate the goodness-of-fit of the solution model

to the electronic map phased by this model using a real-space

map correlation coefficient. It is shown that a few cycles of

such refinement will improve the accuracy of the orientation

and position of the solution model, as well as its ranking in the

solution list.

Since we have developed the method to use small search

models such as a helix fragment, we need to assemble several

fragments positioned by the translation search to obtain a

bigger solution model so that its phasing power is increased.

Currently, the solution model obtained is neither big nor

accurate enough to phase the target crystal so that automatic

model building can be applied. The initial rough phases of the

solution model cannot be used to bootstrap the ab initio

phasing process by the current methods we know of. Instead

we use the solution model consisting only of helices to search

the PDB (Protein Data Bank) to find similar known structures

that are structurally homologous to this solution model.

The known structures found can then be tested by further

molecular-replacement searches. We will show that the solu-

tion model obtained by our method can pick out the correct

native crystal structure with a different space group from the

PDB in top rankings. For this database search, we use our own

search program package SDEPS. Combining with other

structural determination methods, our method is almost ready

for practical application.

2. Materials and methods

2.1. Real-space rotation function using Patterson vectors
(PVMR_ROT)

The method of PVMR_ROT rotation function has been

described previously (Jiang, 2008). Briefly, the search model

vectors are directly matched to the Patterson vectors in real

space using five ‘image-seeking’ functions, allowing partial

matching between the search model and the Patterson vectors.

The rotation function for a given orientation of the search

model is the average values of the five ‘image-seeking’ func-

tions. These average values are further combined to calculate

a single rotation function value using a dynamic correlation

coefficient (Jiang & Ding, 2010). The five ‘image-seeking’

functions for matching the model and Patterson vectors are as

follows.

The first is the product of the weights, namely the peak

heights of the Patterson vectors, pi, and the heights of the

model atomic vectors, qi,

Rprod ¼
1

N

XfMPg

i

pi � qið Þ; ð1Þ

where {MP} denotes the set of matched points or vectors, and

N is the total number of matched points.

The second is the correlation coefficient between the

weights, with the same p’s and q’s as in equation (1),

Rcorr ¼
h pqi � h pihqi

½ðh p2i � h pi2Þðhq2i � hqi2Þ�1=2
; ð2Þ

where hpi and hqi denote the average over the matched points

or vectors.

The third is the relative R factor of the weights, with the

same p’s, q’s, {MP} and N as in equation (1),

Rrfac ¼
1

N

XfMPg

i

jpi � qij

ðh pi þ hqiÞ=2

� �
: ð3Þ

The fourth is the relative entropy between the model and

Patterson vectors, with the same p’s, q’s, {MP} and N as in

equation (1),

Rent ¼
1

N

XfMPg

i

pi ln
pi

qi

� �
� hpi ln

h pi

hqi

� �
: ð4Þ

The fifth is the mean-square residues between the model and

Patterson vectors, with the same p’s, q’s, {MP} and N as in

equation (1),

Rres ¼
1

N

XfMPg

i

pi � qið Þ
2: ð5Þ

Since each ‘image-seeking’ function can be used for searching

the matching peaks, there are five peak modes. For each peak

mode, there are five ‘image-seeking’ function scores; so, for

a given orientation, there are 25 scores. Two more scores

are added to each peak mode, and they are the number of

matched vectors averaged over all matching peaks and the

average number of matching peaks. These two numbers are

found to be proportional to the signal of the rotation function.

Therefore, there are 5 � 7 = 35 scores for each orientation of

the search model.

For each orientation sampled, its neighbour orientations

within an angle distance of say 15� are pre-calculated. From

these neighbours, a given fixed number of them are randomly

selected, say 260. The angle distances from these orientations

to the ‘centre’ orientation sampled are then used as the

‘experimental’ value for the multivariate linear regression

method. The variables for the regression are the 35 function

scores. The correlation coefficient between the fitted value and

the ‘experimental’ value is then defined as the dynamic

correlation coefficient for the orientation sampled and

assigned to be the rotation-function value. This method of

calculating the rotation function has been tested (Jiang &

Ding, 2010) and has several advantages. Its most important

advantage, compared to the previously defined ‘static’ rotation

function (Jiang, 2008), is that it is independent of the crystal
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properties such as cell parameters and space groups, as well as

the specific types of search models and target structures.

2.2. Real-space translation function using Patterson vectors
(PVMR_TRAN)

The translation function uses the Patterson vectors in real

space, whose general principles have been described (DeLano

& Brünger, 1995; Grosse-Kunstleve & Adams, 2001; Jiang &

Rao, 2001; Kissinger et al., 2001; Rossmann, 1990). Briefly, the

matching of the model cross vectors of any symmetry mate to

the Patterson vectors can only determine two components of a

translation vector. Therefore, at least two symmetry mates

must be used and the overlapping components must have the

same translation to ascertain that the same translation vector

has been found in matching the cross vectors. This method can

be implemented in a computer algorithm so that as many sets

of cross vectors can be checked as there are different

symmetry mates. The consistent peaks from this matching of

cross vectors are output.

A fast translation algorithm has been used in the matching

of cross vectors [see Fig. 1 in Jiang (2008)]. The peak is not

very sharp, as shown in the figure. But, in practice, when the

matching scores are weighted by the ‘image-seeking’ functions

the peaks are more sharpened than without the weighting.

The matching between the model cross vectors and the

Patterson vectors is scored by the same ‘image-seeking’

functions described above in equations (1)–(5). For each

translation solution, including a rotation and a translation, a

dynamic correlation coefficient is also calculated and used as

the translation-function value. The neighbours of the ‘centre’

solution are searched in the six-dimensional space instead of

only in the three-dimensional rotation space as in calculating

the rotation function. Again, a fixed number of neighbours are

randomly selected and a dynamic correlation coefficient is

calculated by using the linear regression method, with the

‘experimental’ values being the centre-of-mass distance

between the neighbour solutions and the centre solution.

2.3. Refinement of the orientation and position of translation
solutions

After obtaining the translation solutions of the molecular

replacement, the orientation and position of the solution

models need to be refined. The relatively low accuracy of the

solutions is partially due to the fact that the search model is of

very small size. It is also due to the fact that the accuracy of the

real-space grid-based translation search depends on the grid

size used, but using smaller grids will increase the computation

time considerably. Therefore, after locating a potential solu-

tion, it needs to be refined locally using better orientation and

position sampling and a more sensitive scoring function.

For a scoring function, the real-space map correlation

coefficient is used. For a given solution model, the corre-

sponding phases are calculated. Then these phases are used to

calculate two electron-density maps: one using the experi-

mental diffraction amplitudes and the other the calculated

amplitudes based on the solution model. The correlation

coefficient between these two maps is calculated. The defini-

tion of the correlation coefficient used is

R ¼
h�1�2i � h�1ih�2i

h�1
2i � h�1i

2
� �1=2

h�2
2i � h�2i

2
� �1=2

ð6Þ

where �1 and �2 are two electron densities, and h i denotes

averaging. The range of R is usually between 0 and 1. A value

of 1 means complete matching with each other. It has been

shown that the R value is directly correlated with the average

phase error between the model and the target crystal structure

(Lunin & Woolfson, 1993). However, when the target struc-

ture is unknown, the R value is only a relatively inaccurate

index of how the solution model matches with the target

structure.

There are two ways to improve the sampling of the orien-

tations and positions of a translation solution. One is random

sampling within a radius of the angle distance and the centre-

of-mass distance. This is called the perturbation method. The

other is to use a multivariate optimization method. For this

strategy the Broyden–Fletcher–Goldfarb–Shanno (BFGS)

method (Press et al., 1992) is used.

For the perturbation method, 60 orientations are sampled

within an angle distance of 15�. For these 60 orientations, the

grid-based translation search is performed again and the

translation solutions clustered and sorted again. The top ten

solutions are saved as the candidate solutions for further

refinement.

The BFGS method is a very powerful and stable gradient-

based algorithm for finding the local minimum of a multi-

variate function. It usually requires the calculation of the

functional gradient at a given variable point. For the map

correlation coefficient, the analytical gradient calculation is

not possible. The common way to substitute for the direct

calculation of the functional gradient is to calculate the

gradient numerically. For our purpose, the function difference

method is used with the formula

gðkÞ ¼
f ½xðkÞ� � f ½xðkÞ þ�xðkÞ�

�xðkÞ
; ð7Þ

where g(k) is the functional gradient at step k of the optimi-

zation. f [x(k)] is the functional value at the variable point x(k).

�x is the difference step size.

2.4. Assemble the solution models and search for the
homologous folds in the PDB

The solution model is generated by assembling the frag-

ments positioned by the translation solutions and the resulting

model is checked for steric clash in crystal packing. Usually

many solutions are possible and these models are further

screened. They can either be further refined using the BFGS

method or other rigid-body-based refinement methods, or

they can be used to search in the PDB to find structurally

homologous folds so that better search models for molecular

replacement can be found.

For the BFGS method, both the position and the ranking of

the correct solutions can be improved. However, in this work
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the phases generated with the assembled solution

models are not good enough to lead to traceable

electron-density maps using 2 Å data. As a second

strategy, the solution models are used to search in

the PDB to find homologous folds that are struc-

turally similar to the correct native structure,

namely myoglobin. In our tests, another myoglobin

structure in a different space group has been found

and ranked high.

For searching the PDB, a program package

SDEPS was used. It is a six-dimensional structural

alignment method and has not been published. Owing to

limitations of space, it will be described elsewhere. It can align

two structures using C� atoms without constraints on the

sequential order of the fragments aligned. This is a required

feature in our work.

2.5. Data used for tests

The target crystal used for the positive tests was the

myoglobin crystal structure (PDB code 1J3F) (Ueno et al.,

2005). The space group is P212121, with unit-cell parameters a

= 49.163, b = 40.002, c = 80.011 Å and with one molecule in an

asymmetric unit. The experimental diffraction data for this

entry 1J3F were available to 1.45 Å resolution. Another

crystal structure (PDB code 1BXW) (Pautsch & Schulz, 1998)

was used for the negative control. Its space group is P212121,

with unit-cell parameters a = 32.972, b = 58.787, c = 76.237 Å

and with one molecule in an asymmetric unit. The diffraction

data for this entry were available to 2.50 Å resolution. This

crystal structure was used to construct an artificial crystal with

the same crystal parameters as the 1J3F crystal.

Three poly-Ala models were used as separate search models

for the positive tests. They consisted of a helix from residues

A3 to A10, A3 to A14 and A3 to A18 in the myoglobin

structure of 1A6M and had been rotated by a polar angle (45,

60, 180�) relative to the 1J3F crystal. The same 16-residue

model was also used as the search model for the negative

control.

Both the coordinates and diffraction data were extracted

from the PDB (http://www.rcsb.org). The Patterson maps were

calculated using CCP4 programs (Collaborative Computa-

tional Project, No. 4, 1994) and the resolution cutoffs for the

diffraction data were 2.0 Å. The Patterson vectors selected for

matching were map points with values greater than or equal to

1�. One unit cell of the Patterson map was scanned for

matching.

The PDB fold database was obtained from ASTRAL-SCOP

version 1.63 (Brenner et al., 2000; Casbon et al., 2006). It

consisted of 762 unique fold domains.

3. Results

The criterion for a correct solution is when the angle distance

of the rotation is no greater than 25� and the centre-of-mass

distance of the translation is within a radius of 15 Å away from

the true native solution. The workflow of the PVMR programs

is shown in Fig. 1, where each box corresponds to a major step.

The results of each step for a single-fragment search model are

described below.

3.1. Step 1: optimize the rotation-search parameters

This was done by sampling 30 random rotations globally to

estimate the level of the background noise. The lower the

background noise is, the better the corresponding search

parameters (Jiang & Ding, 2010). Three parameters are

screened by grid sampling, namely the grid size, the Nsum

cutoff and the Nsum_unit cutoff. The ‘Nsum’ cutoff denotes

the minimum number of matched vectors for peak searching;
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Figure 1
The workflow of the PVMR programs.

Table 1
Optimization of parameters for the rotation search.

No. of
Grid sampling of parameters

Best parameters
(grid size, Nsum, Noise

residues† Grid size (Å) Nsum Nsum_unit Nsum_unit)‡ level§

8 (4.0 4.2 4.4 4.6 4.8 5.0) (2 4 8) (2 4 8 12 16) (4.4, 8, 8) 0.5728
12 (4.0 4.2 4.4 4.6 4.8 5.0) (2 4 8) (2 4 8 12 16) (4.2, 8, 12) 0.5272
16 (4.0 4.2 4.4 4.6 4.8 5.0) (2 4 8) (2 4 8 12 16) (4.2, 2, 16) 0.4947

† Number of residues in the helix fragment used as the search model. ‡ The best parameter set was
found by finding the lowest noise level in the grid sampling. § The noise level is the average dynamic
correlation coefficient for the 30 random rotations.



‘unit’ refers to the unit cell. For the tests presented here

the best parameters for the rotation search used are listed in

Table 1.

3.2. Step 2: rotation search

All the rotations sampled were sorted according to the

descending order of the dynamic correlation coefficients and

the top 5000 solutions were saved for the next step. The results

are shown in Table 2.

3.3. Step 3: re-sort the rotation solutions by calculating the
map correlation coefficient

The 5000 rotations saved from the last step were used for

the translation search using PVMR_TRAN. The translation

solutions for each rotation were sorted by the dynamic

correlation coefficients and the top ten solutions were saved.

Then R was calculated for these ten translation solutions and

the highest R was used as the score for this rotation. Next, the

5000 rotations were re-sorted according to the R values. After

the re-sorting, only the top 1000 rotations were saved for the

next step. Alternatively, the R-value calculation was not used,

but the sorting order according to the dynamic correlation

coefficients was used to save the top 1000 rotations. The

results by using R values are listed in Table 3.

3.4. Step 4: perturbation refinement of the rotation and
translation solutions

Sixty random rotations within an angle distance of 15�

were selected to perturb the rotations saved from the last step.

For each rotation sampled, including those sampled by the

perturbation, the translation search was performed using

PVMR_TRAN and the top ten translation solutions were

saved. Then all the translation solutions were pooled together

and sorted according to the dynamic correlation coefficients.

At the end of this step, 6000 translation solutions were saved

(see Table 4).

3.5. Step 5: refine the translation solutions using the BFGS
minimization method

After this step, both the ranking and the accuracy of the

solution were improved (see Table 5).

3.6. Step 6: assemble the solution models using the
translation solutions and check the crystal packing

Because the search model was relatively small, the solution

models were constructed by combining several translation

solutions and assembling the transformed fragments. Then the

crystal packing was checked for steric clash. Usually a few

hundreds of assembled solution models were able to pass the

crystal-packing check (see Table 6).

3.7. Step 7: search the PDB for structurally homologous folds

The solution models were then searched against a non-

redundant fold database provided by ASTRAL-SCOP version

1.63 (Brenner et al., 2000; Casbon et al., 2006), consisting of

762 unique folds. The results are shown in Table 6.

3.8. Negative control using a b-barrel structure 1BXW from
the PDB

The target crystal structure for the negative control was

1BXW, which is a �-barrel structure. From Table 6 it can be

seen that the best ranking obtained using the 16-residue model

for the alignment with fold 1A6M was 73, much worse than the

positive tests, with rankings of 23, 1 and 3 for the 8-, 12- and

16-residue models, respectively. This proves the effectiveness

of the PVMR_TRAN solutions.

The computing time for each step is shown in Table 7.

Because of the low speed of PVMR_TRAN and BFGS
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Table 2
Rotation search using PVMR_ROT.

No. of
residues

No. of top
rotation
solutions

No. of
correct
solutions

Best
ranking
of correct
solutions

Ranking of
the best
solution

Error of
the best
solution (�)

8 5000 5 870 4967 13.535
12 5000 3 728 3366 4.769
16 5000 6 1200 1228 9.851

Table 3
Ranking of correct solutions after re-sorting by the map correlation
coefficient.

No. of
residues

No. of top
rotation
solutions

No. of
correct
solutions

Best
ranking
of correct
solutions

Ranking of
the best
solution

Error of
the best
solution (�)

8 1000 4 297 679 13.535
12 1000 2 422 468 11.583
16 1000 3 634 905 12.502

Table 4
The results of the perturbation refinement by using PVMR_TRAN.

No. of
residues

No. of
sampled
rotations

No. of top
translation
solutions

No. of
correct
solutions

Best
ranking
of correct
solutions

Errors and
ranking of
the best
solution
(�, Å, ranking)

8 60000 6000 52 94 7.908, 10.244, 3569
12 60000 6000 33 81 10.980, 10.569, 3614
16 60000 6000 34 56 10.788, 8.314, 5882

Table 5
Improvement of translation solutions by BFGS refinement.

No. of
residues

No. of
translation
solutions
refined

No. of
correct
solutions

Best
ranking of
correct
solutions

Errors and
ranking of
the best
solution
(�, Å, ranking)

8 6000 47 352 5.935, 9.091, 5144
12 6000 57 27 4.431, 3.534, 255
16 6000 64 4 14.257, 2.713, 2861



refinement, the execution had to be distributed on a Linux

cluster.

4. Discussion

In this work, a complete procedure for molecular replacement

(PVMR) has been described. The rotation function of the

previous work (Jiang, 2008; Jiang & Ding, 2010) has been

improved upon. The translation search has been implemented

in a more automatic fashion than was done previously (Jiang

& Rao, 2001). The resulting program package PVMR includes

both the rotation search and the translation, and is almost

automatic and ready for practical application. It has a number

of unqiue features. First, for the rotation function, it matches

the vectors of the search model with the Patterson vectors in

real space using both the self and the cross vectors, not just the

self vectors as is done for most other reciprocal-space imple-

mentations of the rotation function. This enhances the signal-

to-noise ratio and enables the use of very small search models

such as a helix fragment. Second, the translation function

clusters the solutions in the six-dimensional space and uses the

dynamic correlation coefficient to sort the solutions. Third, it

can search the PDB database for structurally homologous

folds to derive new and better search models for further

structure determination by molecular replacement. Fourth, it

is capable of searching very small models such as helix frag-

ments consisting of only eight residues. These are just a few

among other new features associated with the PVMR method.

Therefore, this is a complete novel implementation of the

molecular-replacement method in real space.

However, the current PVMR method cannot generate

solution models that are accurate enough to bootstrap the

phasing of an unknown target crystal. This is because the size

of the search model is too small to be able to refine the

orientation and position of a solution model effectively using

either PVMR_TRAN or BFGS. However, there are a number

of ways in which the solution models produced by PVMR can

be used in facilitating structure determination. First, the

solution models can help select the best models derived from

small-angle X-ray scattering data (Petoukhov & Svergun,

2007). Second, the fold domains found from the PDB search

using the solution models can be scored for fold threading

using the target protein sequence.

This way the best fold found, which

should lead to new and bigger search models, can then be used

as the new search model for further molecular replacement.

Finally, the solution models can help narrow the range of

possibilities of the predicted structures obtained with predic-

tion methods such as ROSETTA (Bystroff & Shao, 2002;

Raimondo et al., 2007; Schonbrun et al., 2002). It has been

shown that the predicted structure can also be used as a search

model for molecular replacement (Rigden et al., 2008).

PVMR has not been tested using large search models

because this class of problems has been solved successfully by

the current methods (MOLREP, PHASER, AMORE, EPMR

etc.). Nevertheless, the ability of the PVMR method to tolerate

errors in the search models needs to be tested in the future.

The problem with using bigger search models is that the

computing time will increase with the size of the search

models.

In future work, the method of rigid-body refinement will be

further improved using new scoring functions. They can

include information from both reciprocal space (phase

refinement) and real space (electron-density-map pattern

recognition), so that more accurate solution models can be

obtained to facilitate the ab initio phasing process. A better

optimization algorithm can also be implemented using hill-

climbing algorithms such as simulated annealing.

This work was supported by the National Natural Science

Foundation of China (grant Nos. 10674172 and 10874229).
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Table 6
The best ranking of the alignment of the solution models with the fold 1A6M.

No. of
residues

No. of
fragments

No. of
solution
models

Maximum
RMS of
aligned
folds

Minimum
No. of
aligned
residues per
fragment

No. of
alignments

Ranking of
alignment
with fold
1A6M

Statistics of
best alignment
(No. of residues,
RMS, No. of
fragments)

8 8 3280 8 4 178 23 46, 7.01, 8
12 8 199 5 4 11 1 49, 4.76, 7
16 4 649 5 8 803 3 50, 4.27, 5

16† 4 328 5 8 446 73 41, 3.60, 4

† The negative control is performed using the same 16-residue search model and an artificial target crystal using the same
crystal parameters as 1J3F but using a �-barrel structure from the PDB entry 1BXW. The workflow performed on this artificial
crystal is the same as the positive tests.

Table 7
Computing times.

Step

CPU hour
(one processor
at 2.0 GHz)

1 0.5
2 8
3 643
4 7000
5 2100
6 0.02
7 135
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